APPROXIMATE SOLUTION OF SOME NONLINEAR
PROBLEMS OF HEAT CONDUCTION THEORY

A. N. Luppov and B. G. Ogloblin UDC 536.2.01

In this paper we obtain approximate solutions for the problem of unsteady heat conduction in
a heat-radiating plate, a solid cylinder, a hollow eylinder, and a sphere, in which internal

heat sources are present. The solution involves the assumption of a parabolic temperature
profile.

The investigation of heat transfer processes in a solid with radiant heat exchange at its surface leads

(see [1]) to the heat-conduction equation with the nonlinear boundary condition
— A ﬁ = o8 (T [ —0%).
on |,

Existence and uniqueness theorems have been proved (see [2]) for boundary problems of this type;
however, an exact analytic solution, even for the simplest regions, is as yet unknown. There is, in this
regard, considerable interest in formulating an approximate solution of individual problems of the type
mentioned. For bodies without internal heat sources, such solutions have been obtained by diverse meth-
ods; see, for example, [3-5].

In this paper we obtain solutions for bodies of simplest geometric form with internal heat generation
and with radiant heat exchange at the boundary in which we assume a parabolic temperature profile.

Heating of a Plate, Cylinder, and Sphere. Consider the equation
19
or
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for the region 0 < r =R; 0 =t <ew. For =0, 1, and 2 it describes a symmetric temperature field in a
plate, an unbounded eylinder, and a sphere, respectively. For the initial condition we have T(r, 0) = T,.
The boundary conditions have the form

ILOD _o; —a@ e TR oo 7Ry — 0t ), @
or or
We shall seek a solution in the form
T =ay() +a,() 7+ a, () r 3

We introduce an unknown funetion p(t), expressing the temperature at the boundary r = R, and using Egs. (2),
(3), we express T(r, t) in terms of p(t). From the first boundary condition it follows that a,(t) = 0, while
the second yields

oe
2a,R = — — (pt—1%).
: A ()
In addition, we have
ay + a,R? =p,

whence
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Fig. 1. Variation of the temperature of the cylinder surface (t in sec, p in °K).

Fig. 2. Temperature distribution along a cylinder radius at (a) t = 17 sec; (b} t = 62 sec.
(radius r in meters) Curve 1: solution obtained by numerically integrating Eq. (1); curve
2. golution based on formulas (7), 4).
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Thus the temperature of the body is expressed in terms of the boundary temperature

oeR (p* — 44 ( l—i)
21 (p) R/
We now multiply both sides of Eq. (1) by r@ and integrate it through with respect to r from 0 to R,

making use of Eq. (4). In addition we carry ¢(T)y(T) across the integral sign as ¢(T)y(T), where T isa
mean temperature defined in terms of the boundary temperature by the formula

geR (p* — O%)
(@32 ()
Upon carrying through the required differentiations with the substitution of T(r, t) from formula (4)
into the left member of Eq. (1), the latter having been previously integrated through, we obtain an ordinary
differential equation for p(t). Solving this equation for dp /dt, we obtain
S)— {w+ l)oe (ot — B4)+ 40eRO% (T) y(T) as
dp R (@ + 3) A (p) dt
dt . {1 doeRp® geR (p* — &%) d?\] .
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In general Eq. (6) may only be integrated numerically. We note, however, an important special case in
which it has an expliecit solution.

T(rH=p+ (4)

T®H=p+ 3

Assume that the thermophysical parameters e, v, A are independent of the temperature and that the
gpecific power S and the temperature of the medium are constant. Equation {6) then becomes
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which may be integrated in terms of quadratures:
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The constant C; may be determined from the condition p(0) = T;. Equation (7), along with Eq. (4), enables
us to find the temperature of the body at an arbitrary time instant t. Moreover, depending on «, it gives
the temperature in a plate, an unbounded eylinder, or a sphere.

Heating of an Unbounded Hollow Cylinder. Consider Eq. (1) in the regionR; =r =Ry, 0 =t < = for
« = 1. Inthis case it describes the temperature field in an unbounded hollow cylinder. We assume that no
heat flow takes place across the boundary r = Ry, and that at the boundary r = R, heat exchange takes place
through radiation with a medium at temperature 4.

We give only the final results, obtained in a maunner similar to the previous results. The formulas
in this case correspond to the formulas 4)-(7):
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We note that the constant C; (or correspondingly the constant C,) allows us to satisfy the initial condi-
tion at the radiating surface only. However, if #{0) = T, the initial condition is satisfied automatically
throughout the region. In a more general case, instead of requiring the initial temperature to be constant,
it is sufficient to assume that heating occurs from a steady state and that #(f) has no jump at t = 0.

For the hollow cylinder the requirement that the inner surface be insulated is not necessary. With
insignificant changes the solution can also be obtained for another boundary condition.

A Numerical Example. As an example we congider heating of an unbounded cylinder of radius R =0.01
m, where the cylinder material has the thermophysical parameters ¢ =250 J/kg-deg, v= 10* kg/m?, A
=29 W/mdeg. The specific power of the source S=4- -107 W/ m3. Temperature of the surrounding me~
dium ¢ = T, =300 °K. Emissivity € = 0.23. Figure 1 shows the variation of temperature p at the surface of
the cylinder. In Fig. 2 temperature distributions along a cylinder radius are shown at two different times,
calculations being made using formulas (7), {4) and also by numerically integrating Eq. (1). It is evident
that the values of the temperature on the boundary and also the values of the mean temperatures, obtainedby
these two methods, are practically coincident.

At r = 0 the temperatures calculated from formulas (7}, (4) are somewhat higher. As the temperature
increases the relative value of this error diminishes, and as a stationary thermal regime is reached our
solution becomes an exact solution.

Two stages in the heating may be distinguished: a broadening of the zone of influence of the boundary
conditions and heating with a parabolic temperature profile throughout the thickness of the body, as was the
case, for example, in [4]; in our case this does not give the desired results. In the absence of heat sources
formula (7) differs only insignificantly from the formula given in [4] for the second stage of heating.
However, in.this case a jump in temperature of the surrounding medium takes place at t =0, which
makes it necessary to consider two stages in the heating in every case involving large values of
ged* RA.
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NOTATION

is the body temperature;

is the temperature of surrounding medium;
is the time;

is the radial coordinate;

is the index determining body geometry;
is the specific capacity;

is the density;

is the thermal conductivity;

is the thickness (radius) of body;

is the reference temperature;

is the Stefan-Boltzmann coefficient;

is the emissivity;

is the temperature of emitting surface;
is the gpecific power of source;

are the internal and external radii of hollow cylinder.
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